Some special graphs:

1-Petersen graph

The graph shown in Figure

2- Complete graph

In this graph any vertex adjacent with each others, write as K_{n}, where n is the number of the vertices .

Example : K_{2}

Remark:

$$
\varepsilon\left(K_{n}\right)= \begin{cases}n(n-1) & \text { if } K_{n} \text { is directed } \\ \frac{1}{2} n(n-1) & \text { if } K_{n} \text { is undirected }\end{cases}
$$

3 - Bipartitegraph

A bipartite graph is a graph that the vertex - set can be partition into two sub sets X and Y such that the end - vertices of any edge one in X and the other one in Y.

Example:

4- complete bipartite graph

A complete bipartite graph is a bipartite $G(X \cup Y, E)$ in which each vertex of X is jointed by an edge to vertex of Y. If $|X|=m$ and $|Y|=n$ then the complete bipartite undirected graph denoted by $K_{m, n}$. See Figure for an example to the complete bipartite graph for $m=$ $n=3, K_{3,3}$.
Example :- $\quad G=\left(V(G), E(G), \psi_{G}\right)$ is an undirected graph, where

$$
\begin{gathered}
V(G)=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right\} \\
E(G)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}\right\}
\end{gathered}
$$

and ψ_{G} is defined by

$$
\begin{array}{ccc}
\psi_{G}\left(e_{1}\right)=z_{1} z_{5}, & \psi_{G}\left(e_{2}\right)=z_{1} z_{4}, & \psi_{G}\left(e_{3}\right)=z_{1} z_{6} \\
\psi_{G}\left(e_{4}\right)=z_{2} z_{4}, & \psi_{G}\left(e_{5}\right)=z_{3} z_{4}, & \psi_{G}\left(e_{6}\right)=z_{3} z_{6} \\
\psi_{G}\left(e_{7}\right)=z_{2} z_{5}, & \psi_{G}\left(e_{8}\right)=z_{3} z_{5}, & \psi_{G}\left(e_{9}\right)=z_{2} z_{6}
\end{array}
$$

Example: to the complete bipartite graph for $m=2, n=3$,
$K_{2,3}$

5- K- Partite graph

In this graph we can partition the Vertex - set in to k- partite $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\} \quad$ such that in any edge in this graph , one end - Vertex in X_{i} and the other in $X_{j}(i \neq j)$

Example: 3-Partite

X_{1}

X_{3}

6- Complete K- Partite graph

The k- partite graph is called complete k - partite if any vertex in X_{i} adjacent with all vertices in $X_{1}, X_{2}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}$, denoted by $K_{n}(k)$.

Remark :

1) $\varepsilon\left(K_{m, n}\right)=m n$.
2) $\varepsilon\left(K_{n}(k)\right)=\frac{1}{2} k(k-1) n^{2}$.

7- n - Cube $\left(\boldsymbol{Q}_{\boldsymbol{n}}\right)$
In this graph
$V\left(\boldsymbol{Q}_{n}\right)=\left\{x_{1} x_{2} \ldots x_{n}: x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\}$
$E\left(\boldsymbol{Q}_{n}\right)=\left\{\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right): \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=1\right\} \quad$, denoted by $\boldsymbol{Q}_{\boldsymbol{n}}$.

Remark: $v\left(\boldsymbol{Q}_{\boldsymbol{n}}\right)=2^{n}, \boldsymbol{\varepsilon}\left(\boldsymbol{Q}_{\boldsymbol{n}}\right)=\boldsymbol{n} 2^{n-1}$

Example : \boldsymbol{Q}_{1}

Q_{3}

Q4

Theorem : The graph n- Cube is bipartite graph .

Proof:

8- Complement graph

A graph $\boldsymbol{G}^{\boldsymbol{c}}$ is called complement graph of the graph \boldsymbol{G} if $\quad V\left(\boldsymbol{G}^{\boldsymbol{c}}\right)=$ $\boldsymbol{V}(G)$ and $e \in E\left(\boldsymbol{G}^{\boldsymbol{c}}\right) \leftrightarrow \boldsymbol{e} \notin E(G),\left(\right.$ we write $\boldsymbol{G}^{\boldsymbol{c}}$ as \boldsymbol{G}^{\prime} or $\overline{\boldsymbol{G}}$)
Example:

G

G^{c}

Definition : If $G \cong \boldsymbol{G}^{\boldsymbol{c}}$ then the graph G is called selfcomplementary .

Remark: Let D be a digraph such that
$V(D)=\left\{x_{1}, x_{2}, . . ., x_{n}\right\}$

$$
E(D)=\left\{e_{1}, e_{2}, . ., e_{e}\right\}
$$

$V(G)=\left\{x_{1}^{\prime}, x^{\prime \prime}{ }_{1}, x^{\prime}{ }_{2}, x^{\prime \prime}{ }_{2}, \ldots, x^{\prime}{ }_{n}, x^{\prime \prime}{ }_{n}\right\}$,
$E(G)=\left\{=\left\{x^{\prime}{ }_{i} x^{\prime \prime}{ }_{j}:\left(x_{i}, x_{j}\right) \in E(D)\right\} \quad\right.$ the graph G is called associated bipartite undirected graph with D .
i.e. $v(G)=2 v(D)$ and $\varepsilon(G)=\varepsilon(D)$.

$$
E(G)=\left\{e_{1}, e_{2}, . ., e_{e}\right\}
$$

