Some special graphs:

1-Petersen graph

The graph shown in Figure

2- Complete graph

In this graph any vertex adjacent with each others , write as K_n , where n is the number of the vertices .

Example : K_2

Remark:

$$\varepsilon(K_n) = \begin{cases} n(n-1) & \text{if } K_n \text{ is directed} \\ \frac{1}{2} n(n-1) & \text{if } K_n \text{is undirected} \end{cases}$$

3 – Bipartitegraph

A bipartite graph is a graph that the vertex – set can be partition into two sub sets X and Y such that the end – vertices of any edge one in X and the other one in Y. Example:

4- complete bipartite graph

A complete bipartite graph is a bipartite $G(X \cup Y, E)$ in which each vertex of X is jointed by an edge to vertex of Y. If |X| = m and |Y| = n then the complete bipartite undirected graph denoted by $K_{m,n}$. See Figure for an example to the complete bipartite graph for $m = n=3, K_{3,3}$.

Example :- $G = (V(G), E(G), \psi_G)$ is an undirected graph, where

$$V(G) = \{z_1, z_2, z_3, z_4, z_5, z_6\}$$
$$E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$$

and ψ_G is defined by

$$\begin{split} \psi_G(e_1) &= z_1 z_5, & \psi_G(e_2) = z_1 z_4, & \psi_G(e_3) = z_1 z_6, \\ \psi_G(e_4) &= z_2 z_4, & \psi_G(e_5) = z_3 z_4, & \psi_G(e_6) = z_3 z_6, \\ \psi_G(e_7) &= z_2 z_5, & \psi_G(e_8) = z_3 z_5, & \psi_G(e_9) = z_2 z_6, \end{split}$$

Example: to the complete bipartite graph for m = 2, n=3, $K_{2,3}$

5- K- Partite graph

In this graph we can partition the Vertex – set in to k- partite $\{X_1, X_2, ..., X_k\}$ such that in any edge in this graph, one end – Vertex in X_i and the other in X_j ($i \neq j$)

*X*₃

6- Complete K- Partite graph

The k-partite graph is called complete k-partite if any vertex in X_i adjacent with all vertices in $X_1, X_2, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k$, denoted by $K_n(k)$.

Remark:

- 1) $\varepsilon(K_{m,n}) = m n.$ 2) $\varepsilon(K_n(k)) = \frac{1}{2}k(k-1)n^2.$
- 7- **n** Cube (Q_n)

In this graph

$$V(\boldsymbol{Q}_{n}) = \{ x_{1} x_{2} \dots x_{n} : x_{i} \in \{0,1\}, i = 1,2, \dots, n \}$$
$$E(\boldsymbol{Q}_{n}) = \{ (x_{1} x_{2} \dots x_{n}, y_{1} y_{2} \dots y_{n}) : \sum_{i=1}^{n} |x_{i} - y_{i}| = 1 \} , \text{ denoted}$$
by \boldsymbol{Q}_{n} .

Remark : $\nu(\boldsymbol{Q}_n) = 2^n$, $\varepsilon(\boldsymbol{Q}_n) = n 2^{n-1}$

Example : Q_1

 Q_3

Q4

Theorem : The graph n- Cube is bipartite graph .

Proof:

8- Complement graph

A graph G^c is called complement graph of the graph G if $V(G^c) =$

V(G) and $e \in E(G^c) \leftrightarrow e \notin E(G)$, (we write G^c as G' or \overline{G})

Example :

Definition : If $G \cong G^c$ then the graph G is called selfcomplementary.

Remark: Let D be a digraph such that

 $V(D) = \{x_1, x_2, \dots, x_n\}$

$$E(D) = \{e_1, e_2, \dots, e_e\}$$
 but

$$V(G) = \{x'_1, x''_1, x'_2, x''_2, \dots, x'_n, x''_n\},$$

$$E(G) = \{ = \{x'_i x''_j : (x_i, x_j) \in E(D)\}$$
 the graph G is called
associated bipartite undirected graph with D.

i.e.
$$v(G) = 2 v(D)$$
 and $\varepsilon(G) = \varepsilon(D)$.
 $E(G) = \{e_1, e_2, \dots, e_e\}$

M350